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FlipIt

FlipIt is a two player game (with players 0 and 1), with three
basic rules:

There is a common resource that player i may capture at any
time by paying a cost of ki .

For each second that the resource is held by a player he or she
gains one point.

The players don’t know who owns the resource at any given
time, except that when a player captures the resource he or
she learns something about the past history of who owned it.

Here we only consider the case where a player capturing the
resource learns only the last move (and thus who made it).
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Open Problems

What is the asymptotically optimal non-adaptive strategy against
an adaptive opponent?

What is the non-asymptotic optimal adaptive strategy against the
currently best known non-adaptive strategy (playing as a Poisson
process)?
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The Setup

Let player 0 be a non-adaptive Poisson process playing at a rate of
α = λ, playing at least once in time period τ with probability
1− e−λτ .

Player 1 is adaptive, and would like to learn λ to figure out the
optimal capture rate.
Player 1 can’t learn λ without capturing, but each capture has a
cost of k1.
If player 1 plays too fast, his or her moves might be consecutive,
which will waste points and give less information about λ.
In a finite game player 1 has to trade off certainty of λ with
spending points (needless captures) and wasting time (needless
caution).
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A Tentative Information Theoretic Bound

The Cramér-Rao bound limits the variance of an unbiased1

estimator of an unknown parameter θ of a distribution X from
observations of X .

The variance of our estimate of θ is at least 1/I, where I is the
Fisher information of our observations of X .

1This is a big assumption!
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A Tentative Information Theoretic Bound

Generous assumption:

Every time player 1 captures, he or she learns a valid sampling
of the mean time to a player 0’s plays – player 1 never plays
“too fast”.

If we make n plays, we get n observations of player 0’s playing
rate, and the minimum variance in our estimate of λ possible is...
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Tactic One

As player 0’s strategy is memoryless, and by Ron’s first theorem,
player 1 can’t play better after n plies than a non-adaptive player
who guesses λ from a distribution of variance λ2/n. Thus, we can
bound the quality of player 1’s play at any point in time.

This proof strategy works against any non-adaptive player 0
strategy parameterized by a set of unknowns to learn, assuming we
can make a reasonable approximation of the Fisher information.
... assuming that the optimal adaptive player estimates λ with no
bias, the Cramér-Rao bound holds, and we have bounded the
quality of the best player 1 strategy.
But we don’t want to assume the best strategy consists of an
unbiased estimator, so we try a different tactic...

Peter Schmidt-Nielsen FlipIt and the Cramér-Rao Bound



Tactic One

As player 0’s strategy is memoryless, and by Ron’s first theorem,
player 1 can’t play better after n plies than a non-adaptive player
who guesses λ from a distribution of variance λ2/n. Thus, we can
bound the quality of player 1’s play at any point in time.
This proof strategy works against any non-adaptive player 0
strategy parameterized by a set of unknowns to learn, assuming we
can make a reasonable approximation of the Fisher information.

... assuming that the optimal adaptive player estimates λ with no
bias, the Cramér-Rao bound holds, and we have bounded the
quality of the best player 1 strategy.
But we don’t want to assume the best strategy consists of an
unbiased estimator, so we try a different tactic...

Peter Schmidt-Nielsen FlipIt and the Cramér-Rao Bound



Tactic One

As player 0’s strategy is memoryless, and by Ron’s first theorem,
player 1 can’t play better after n plies than a non-adaptive player
who guesses λ from a distribution of variance λ2/n. Thus, we can
bound the quality of player 1’s play at any point in time.
This proof strategy works against any non-adaptive player 0
strategy parameterized by a set of unknowns to learn, assuming we
can make a reasonable approximation of the Fisher information.
... assuming that the optimal adaptive player estimates λ with no
bias, the Cramér-Rao bound holds, and we have bounded the
quality of the best player 1 strategy.

But we don’t want to assume the best strategy consists of an
unbiased estimator, so we try a different tactic...

Peter Schmidt-Nielsen FlipIt and the Cramér-Rao Bound



Tactic One

As player 0’s strategy is memoryless, and by Ron’s first theorem,
player 1 can’t play better after n plies than a non-adaptive player
who guesses λ from a distribution of variance λ2/n. Thus, we can
bound the quality of player 1’s play at any point in time.
This proof strategy works against any non-adaptive player 0
strategy parameterized by a set of unknowns to learn, assuming we
can make a reasonable approximation of the Fisher information.
... assuming that the optimal adaptive player estimates λ with no
bias, the Cramér-Rao bound holds, and we have bounded the
quality of the best player 1 strategy.
But we don’t want to assume the best strategy consists of an
unbiased estimator, so we try a different tactic...

Peter Schmidt-Nielsen FlipIt and the Cramér-Rao Bound



Tactic Two

Define a given bound we would like to prove on player 1’s quality
of play, and let any player 1 strategy that is greater than this
bound a “FlipIt shark”.

Construct a unbiased estimator that can estimate λ from the
history of any game between a FlipIt shark and player 0.
If this unbiased estimator beats the Cramér-Rao bound, by
contradiction, FlipIt sharks don’t exist, and the bound is proven
– regardless of how the given shark actually works.
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Our new Cramér-Rao bound, expanded for two player 1 plies:

1

I(X0,X1, λ)
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Where xi are the times of the first two observations, and where w
is the period of time waited between the first two plies.

A FlipIt shark that manages to estimate λ well enough from the
first ply to gain the maximal amount of information from the
second ply without wasting too much time waiting might end up
violating this bound.
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The End of the Proof – (sketch)

Let our FlipIt shark be any strategy that holds the resource more
than . . . of the time on average.

This implies that it only attempts to capture the resource while it
already controls the resource . . . proportion of the time, and w is
no larger than . . . .
Thus, we construct an estimator of λ that gets . . . samples of
player 0’s Poisson process after . . . plies, and thus violates the
Cramér-Rao bound.
Sharks don’t exist, QED.
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Relevant Conclusions

On Ron’s open problem: What’s the optimal non-adaptive strategy
against an adaptive opponent?

A Poisson process minimizes the Fisher information of a
non-adaptively chosen observations, and I think it minimizes the
Fisher information given by a series of adaptively timed
observations.
If true, this implies that a Poisson process kills as many sharks as
possible with the Cramér-Rao bound in the non-asymptotic version
of FlipIt.
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