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Lattice-Based One-Way Functions

I Public key
[
· · ·A · · ·

]
$← Zn×m

q for q = poly(n), m = O(n log q)

fA(x) = Ax mod q

(surjective)
OWF if SIS hard [Ajtai’96]

gA(s, e) = stA + et mod q

(injective)
OWF if LWE hard [Regev’05]

I fA, gA in forward direction yields CRHFs, IND-CPA encryption
(. . . and not much else)
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Trapdoor Inversion
I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x) = Ax:

sample Gaussian x← f−1
A (u)

Invert bt = gA(s, e) = stA + et:

find the unique preimage s, e

I How? Use a “strong trapdoor” for A: a short basis
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

I Crypto applications: [GPV’08, PW’08, PV’08, PVW’08, P’09, CHKP’10,
R’10, ABB’10a, GHV’10, B’10, ABB’10b, GKV’10, BF’11a, BF’11b, OPW’11, . . . ]

Some Practical Drawbacks. . .
7 Generating A with short basis is complicated & slow [Ajtai’99,AP’09]

7 Inversion algorithms either are sequential & need bigints, or are
for suboptimal dimension m and preimage “quality.”
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Our Contributions

New trapdoor generation and inversion algorithms:

4 Much, much simpler & faster
F To generate: one matrix mult.
F To invert fA, gA: efficient, highly parallel, & mostly offline

4 Tighter, more secure parameters
F Asymptotically optimal with small constant factors
F Improvements: 8x in dim m, 112x in “quality”⇒ 50x in keysize

4 New trapdoor notion (not a basis!): 4x smaller, easier delegation

4 More efficient applications beyond “black box” improvements:
F CCA encryption with smaller keys (subsumes [PW’08,P’09,ABB’10a])
F Short, standard-model signatures (improves [CHKP’10,R’10,B’10])
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Trapdoor Generation and Algorithms
1 Start from a special (fixed, public) lattice defined by G.

F Give very fast, parallel, offline algorithms for f−1
G , g−1

G

F Concretely,

G = In ⊗ [1, 2, 4, . . . , q
2 ] =


1 2 · · · q

2
1 2 · · · q

2
. . .

1 2 · · · q
2



2 Randomize G↔ A with a “nice” unimodular transformation:

A = [Ā | G]

[
I R

I

]
= [Ā | G + ĀR]

3 Efficiently reduce f−1
A , g−1

A to f−1
G , g−1

G with pre-/post-processing

Coming very soon to an eprint near you. . .
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